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WAVE PROPAGATION IN AN ELASTIC LONGITUDINALLY INHOMOGENEOUS CYLINDER* 

I.P. GETMAN and YU.A. USTINOV 

The problem of the propagation of stationary waves in an elastic 
waveguide that is inhomogeneous along its length is examined. A 
mathematical foundation is given for the algorithm for solving the 
problem to determine the wave fields in piecewise-homogeneous waveguides. 
Results of computations of the wave reflection and transmission 
coefficients in a strip with two interface boundaries of the material 
properties are presented. A relation is obtained between the extremal 
properties of these coefficients and the different resonance phenomena 
originating in a longitudinally inhomogeneous waveguide. 

1. We consider the problem of the propagation of stationary waves proportional to exp 
(-iot) in an inhomogeneous elastic anisotropic cylinder S {I x1 I< m;x2,z3 ED} consisting 
of subdomains S, = (-00, Eol x D, s, = [Ek-I, Ekl X D (k = 1, 2, . . ., n - I), &, = &,,-.I, m) X D (D E 

R% is the transverse cross-section of the cylinder that is a bounded domain with a smooth 
boundary in the plane z,,x,). Let rk denote the cylindrical part of the boundary of the sub- 
domain Sk. In the general case the subdomains Sk differ in the nature of the boundary con- 
ditions on rk+ the elastic moduli Cijkl, the density p. 

We introduce the notation u = {u,}tl, 0, = {om&l, sm (u) = {e,,)X=1 = {'/z (a+, + 

&&lZ)%=1~ where %, c7nnr a,, are the displacement, stress, and strain amplitudes, and a,, = 
a/axn. Taking Hooke's law into account the stress vector urn can be represented for an 
anisotropic material as follows (A,, B, are (3 x 3) matrix operators): 

urn(u) = A,,aqaxl- iB,u 
-4, = !\A, (k I) II = I\ %,kll lb 4 = \\ Bm(k, 1) II = i I\ cmkIzak+ 

cmkr3asjI, k,l.= 1,,2,3; i2= -1 

(1-i) 

Suppose H = H (D) is a Hilbert space of three-component vector-functions, square inte- 
grable in D and H, = Ha (0) is the Sobolev-Slobodetskii space /l/. We introduce the six- 
component vector W = {u,el} and the Hilbert spaces of six-component vector-functions H'= 

H@H and Hap' = Ha @ Hg into the considerations. The mean power flux P per period 
T = 2nlw through a section 5= Xr = eonst can then be represented in the form /2/ 

P(W)=+(IW,,W)w=+[W,W], .7=iliy -iI1 (4.2) 

(0 is the zero, and I the identity operator in H). 

Let Hc (Sk) be an energetic space of vector-functions with the norm 

Ilu II2 = y lJ (u,, u) dx, n (u, u)‘= i: (0, (u), e,(u))a 
fk-1 rn=l 

(1.3) 

C (Ha), C (&J are spaces of vector-functions 
values in H,,H& respectively. 

dl (x) and W (x) continues in ZC? R with 

2. The equations of stationary vibrations 

amum + PDF =o (2.1) 
in each subdomain S, can be represented in terms of the vector W taking the relationship 
(1.1) into account in the following form (Tk is a matrix differential (6 x 6) form) 
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(2.2) 
t 11 = A,-‘B,, t,, = i (B,*Al-‘BI - v + pwV) 

tl, = --iA,-‘, t,, = B,*A,-‘,, V = i (&B, + i3&3,) 

To be specific, one of the following conditions 

is given on the side surfaces 
The continuity conditions 

are satisfied in the sections 
A normal wave incident on 

ulr,=O (2.3) 

(mIrk = (eznz + e&Irk = 0 (2.4) 

Ir (n is a vector normal to the side surface). 

wk (Sk) = Wk+’ (Ek) (2.5) 

x = Er. 
the boundary x = go = 0 from -00 and determined by the 

elementary solutions W:(x) = W,(z) (see (3.2)) for which P(W,)>U is the source of 
the vibrations. 

3. The matrix differential form Tk with the boundary conditions (2.3) or (2.4) will 
generate the operators To” and Tlk, respectively. The linear bundles 

(T;-yl’)V’=O @=O,,i) (3-f) 

equivalent to quadratic bundles investigated in /3/ correspond to the problems (2.2) and (2.3) 
and (2.2) and (2.4). Later the superscript k, indicating belonging to the subdomain Skrwill 
be omitted where it will not result in confusion. 

Let yt be the eigenvalue of the operator Tg, VotrVlt, . . . . VP* are the corresponding 
eigen- and associated vector-Functions (Jordan chain). A vector-function of the form 

Wt (4 = exp (iy,x) [ -Q$- V,, + * v,, + . . . + v,,] 

is called an elementary solution of (2.2) satisfying the conditions (2.3) or (2.4). 
Relying on the results of /2-?i/, the following properties of the operator To, their spectra 

c(Te) and systems of elementary solutions can be formulated. 
1". The operator Tp is J-selfadjoint in H', i.e., (JT&* = JT,. 
2O. The spectrum o( TB) = A+ U A- U h”, where yt+E A+ if Im vt+ > 0, yt- E A-, if 

Im vt-< 0, yso E A", if Im yso = 0. The sets A* have limit points at infinity(t = +1,*2, . ..). 
the set h" is finite (s = +1,+2, . . . . fN). The eigenvalues ytfr ysO satisfy the following 
symmetry properties: Yt+ = Yt, yt- = yt*,, Y-t+ = -yt*, y-t- = -yt, ymSo = -yso, Complex-conjugate 
quantities are marked with an asterisk. 

3". A critical frequency oo>O exists for the operator To such that Aa = (0) for 
m< 00. 

The system of Jordan chains 
z:; M = {W, (z)} 

{VU) is complete in the space Ha,~~l,, O<a<,<‘l,. 
denote a system of elementary solutions and in conformity with the 

property 2" let M = M' L' IQ- u MC. 
5". A partition M" = Mo+ 1.1 :M,-, exists such that P(W,+)> 0 for any w,+ (3) E Mof 

while P (W,-)< 0 for any w,- (z) E .\I,_ . The elementary solution W,'(x)= M,+ transfers 
energy from left to right while the elementary solution Wt+(x)~M+ damps out exponentially 
from left to right. The elementary solutions W,-(z) E M,-. Wrt- (I) ,G M- possess opposite 
properties. 

6". The following orthogonality conditions hold for elements of the sets M*, M,* : 

rws*, wt*1 b) = &h,, [We*, WIT] (2) = 0, w,*, w,* E iIf,* 

twt*t, w,*](x) = 0, [WS, W,y(x) = eXp(*iB,)&, 
W,*, W,* E M* 

[W,, W,](x) = 0, w, E M$, w, E Jf* 

(3.3) 

We define the space of homogeneous generalized solutions Ho (Sk) in each subdomain SK 
(k = 1, 2, . .( n - 1). When the boundary condition (2.3) is given on I'S, we will say that the 
vector-function u"(s)= H,,(SP), if U(Z) satisfies condition (2.3) and the integral identity 

Eh- 

s [II (u", cpk) - &(p%', rp')~] dE = 0 (3.41 
Eh-1 



for an arbitrary smooth vector-function (p'(x) finite in the segment [E&l, &I- 
In the case of the boundary conditions (2.4), it is sufficient to require satisfaction 

of just the integral identity (3.4) to define the space of homogeneous functions. 
We will assume for the subdomains So, S, that the identity (3.4) is satisfied even for 

the vector-function satisfying the condition 

(P,” are the lengths of the Jordan chains). 
The space W,'(S,) of homogeneous solutions of Eq.(2.2) is defined as the set of vector- 

functions Wx (x) = (ek (rc), o1 (~a)}? where uk (r) E H, (S& and U, (. . .) is an operator acting 

from H*i.(L)) into H_t,P (I)). 
We obtain the following theorem from the properties 4O-6". 

Theorem 1. Let the vector-function be uk~ H,(SJ, k = O,l, . . . . n. Then: 1) the continuity 
condition (2.5) should be understood in the sense of the metric of the space C' (H:,,,_x,,),; 2) the 
following representation hold 

(3.5) 

Here &,w,~ denotes summation over all elementary solutions from Mek*, IV,"-, I@-, M"-, 

respectively, and &t kf 
Ct are constants. 

(3.5) and 2, =0 in ;he case when 
In the case k =O we should set Z3 = 0, in 

k=n. 

Remark 1. The constants c;'. q differ from zero if there are vibrations sources as 
z--r--m and z-m, respectively. 

Remark 2. If the vector a #(z) is already determined in some manner, then the constants 
Ckf r can be found from the relationships 

C,“‘~[W~~, W~(O)j, cy-= [~~~~,w~-(-z~)J, wf* fz a$* (3.6) 

c:'= egpf--ie,)[W,",W:-[O)] 

Cf = exp (id*) [Wok, WP(-1r.L w;* ez I@* 

wok-= (uk(&_& Q(&)). I, = 5r --I&_r 

These representations extend the results in 161, related to over-expansion of the solutions 
obtained by the superposition method in series of homogeneous solutions. 

Let us define the vector-functions U (X) = {U” (& 5 E [gk-$7 E;,]}, w(x) = {Wk ($ z E [Ek-1, 

Ek1) on the whole axis x6? R. We will say that u (5) fz HO (S), W (4 c: H,’ (S), if Irk (z) Gz 

H, (Sk), wk (5) E H,' (Sk). 

4. In conformity with the problem formulated W"(X) = W, + W"- and the radiation con- 
ditions have the following form 

PW-,<o, P@W>,O (4.1) 

Bearing in mind the possibility of using different approximate methods to solve problem 
(2.2)-(2.51, we will present several definitions of its generalized solution. 

Definition 1. We call the vector-function ufz H,(S) satisfying the continuity condition 

ux (Et;) = uk+l (!k) (4.2) 

in the metric C (Hv,)~ the radiation conditions (4.1). and the integral identity 

u', (US 9) + f, (cp) = 0, Q E NIJ W) (4.3) 

the generalized solution. Here 

Yl (u, cp) = k5_ r( (rlk - o:+*, ‘pk)H &) - (al’ - d-l, @hi @k-d] 

Ir(cp)= (a**@+ ~I)~(~~), e* = o1(u*) 

(4.4) 

Definition 2. We call the vector-function u=~HNo(S) satisfying the continuity condition 

d ' (&) = e?l (f 1 k ) (4.5) 
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in the metric C (H-I,,), the radiation conditions (4.1), and the integral identity 

Y,(n, cp) + I, (cp) = 0, Vcp E H,(S) 

the generalized solution. Here 

ffl hkh (Ek) - bk - uk-l> ul ((P’))H @k-l)] 

(4.6) 

(4.7) 

Definitions 1 and 2 are based on the use of the known Hamilton-Lagrange and Castigliano 
variational principles, respectively. Either the continuity condition (4.21, or (4.5) figures 
in each of the definitions presented. Below we formulate a definition of a generalized sol- 
ution in which the continuity conditions are natural, i.e., result from the variational 
principle. To do this we introduce the functionals 

y (u, cp) = i [Yz (u, cp) - yy, (U? cp)l 
1 (cp) y i [4 w - 4 (CPN 

Here u,cp E H,(S). 
Setting W = {u,o,(u)),q = {cp,o,(cp)}, and using the relationship 

ing from the law of conservation of energy, the functionals (4.8) can 

n--l 

(4.8) 

[iv", $1(s) = const, result- 
be given the form 

‘$’ (u, cp) = CD (w, q) = [w’ - wl, q’] (Eo) + ,z, {[w’-‘, 11’1 (bd - 

[wk+l, qk~ (gk)} + [wn-l- w*, $1 (En-l), L(cp) = m (II) = We, 9’ i II’1 W 

(4.9) 

Definition 3. We call the vector-function WE H,‘(S) satisfying the radiation con- 
ditions (4.1) and the integral identity 

@(W, 11) + m (ri) = 0, Vrl E He' G) (4.10) 

the generalized solution of the problem. 
On the basis of representations 13.5) the initial boundary-value problem can be reduced 

to a system of linear algebraic equations fn the constants Ckf. ~ To do this it is sufficient 

to substitute (3.4) into (4.10) and then successively to set qk = Wrk+,WTk- (k = O,l, . . . . 
Iz - 1, n). 

From relationships (1.2), (3.3) and (3.5) we obtain the following theorem. 

Theorem 2. The mean power flux per period P(Wk) through a transverse section z = const 
of the subdomain Sk is determined by the relationship 

P (WO) = P (W,) + P (WO-), P (WO-) = - + i, G- ,2 
5=1 

Nk 
P(W")=~[~ (ICb' I2 -- 1 CT- I’)+ 2Re2, 3exp(iy,klk)exp(iB,K)C:tC:“} 

S=l t 

(k = I,&. . .( n - 1) 

P(W”)+&:+,~ 
S=l 

(4.11) 

We set P(W,) = 1, and we call the quantity K, =-P (Woe) the reflection coefficient, 
and K, = P (W") the transmission coefficient, where K, f K,, = 1. 

In a number of cases expressions (4.11) enable certain general deductions to be drawn 
regarding the properties of inhomogenous waveguides and controlling them. For instance, let 
at least one subdomain S, exist in which there are no homogeneous waves (see property 3"). 
In this case, c q+ = c,p- = 0 in the appropriate expression in (4.11) and energy transfer 
occurs because o"f interaction of a pair of inhomogeneous waves wtq+ (x - En-*), W,"- (5 - E,). 
It is seen here that as 1, = En - &_l increases, the flux decreases exponentially and asymp- 
totically P (Wq) = 0 [exp (-14 Im aQ+)]. 

The theory was used to investigate the wave fields in a planar inhomogeneous isotropic 



1. 

2. 

3. 

4. 

5. 

6. 

7. 

waveguide (D = [--h,h], x3 zz 6) with two material properties inter-facial boundaries, i.e., for 
ZZ=Z and the boundary conditions (2.4) (the case n=l is investigated in /7/). It was 

assumed in the computations that &, = & = 2.66, p,, = Pa = 1.53, ii, = 0.59, Pz = 0.26 (x WIH/mz), p,, = pa = 
1.87, p1 = 0.27 (x 10‘ kg/ m') , Jr = h- t& = 5h. 

The behaviour of the reflection coefficient K,, as a 
function of the dimensionless frequency o0 = uh &&,)" 
is shown in the figure for incidence of the first normal 
compression-tension wave. 

The sharp minima K(o,) correspond to an intense 
increase in the vibrations amplitudes in the rectangle S,. 
The appropriate frequencies can be considered to be 
resonant for S,. Unlike the results obtained by applied 
one-dimensional theories, taking account of dispersion in 
the waveguide results in compression of the points of 

0 Z minimum A,. The reflection coefficient also has a minimum 
at the boundary resonance frequency et /7/, which depends 
slightly on the change in the length of the insert I, as 
calculations have shown. 
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